СтихиСтат.com
поиск   новости   cтат.   поддержка   видео   продвижение  

Геннадий Макеев Перейти на ПРОЗА.РУ

Автор о себе

Произведения

продолжение: 1-50  51-81 

Читатели

Читатель Произведение Дата Время Источник
неизвестный читатель 32   Вий vs философ  11.10.2024 19:09 не определен
неизвестный читатель 31   Докатился до Кати  11.10.2024 02:59 не определен
неизвестный читатель 30   Докатился до Кати  10.10.2024 10:02 не определен
неизвестный читатель 29   Чеширский Кот и гильотина Юма  10.10.2024 01:49 не определен
Вера Кальпан Проблема ослика Иа  09.10.2024 17:40 авторская страница
неизвестный читатель 28   Проблема ослика Иа  09.10.2024 17:29 авторская страница
Борис Гатауллин Обезьяна  09.10.2024 17:25 авторская страница
Виктор Левашов Проблема ослика Иа  09.10.2024 17:25 авторская страница
Олег Роменко Чапаев и пустота  09.10.2024 17:13 авторская страница
неизвестный читатель 27   Деление на ноль  09.10.2024 16:55 не определен
неизвестный читатель 26   Темпорал без противоначал  09.10.2024 15:26 не определен
неизвестный читатель 25   Ахиллес и Гектор на весах  09.10.2024 13:18 google.com
неизвестный читатель 24   Ахиллес и Гектор на весах  09.10.2024 08:05 yandex.ru
неизвестный читатель 23   Ёжики в тумане  09.10.2024 06:24 не определен
неизвестный читатель 22   Сказ про исключение третьего  07.10.2024 21:37 не определен
неизвестный читатель 21   Ахиллес и Гектор на весах  07.10.2024 19:12 не определен
неизвестный читатель 20   Ахиллес и Гектор на весах  07.10.2024 10:01 не определен
Виктор Левашов Проблема референций в мире  07.10.2024 09:33 авторская страница
неизвестный читатель 19   Бывает...  07.10.2024 05:49 не определен
неизвестный читатель 18   Переступить черту  06.10.2024 17:45 не определен

1-20  21-40  41-46   

Рецензии

Рецензия на «Проблема ослика Иа» (Геннадий Макеев)

Вечерний звон и есть хвост...

Ларо Хантер   29.09.2024 01:03     Заявить о нарушении
+ добавить замечания
Рецензия на «Ленин и другое государство» (Геннадий Макеев)

"Государство возникает там, тогда и постольку, где, когда и поскольку возникают классы". То есть любое государство это по сути форма господства одного класса над другим. Не может быть примирения классов, где один из классов живет присвоением продукта труда другого. В частности, при капитализме весь продукт труда присваивается капиталистом, рабочему лишь оплачивается стоимость использования его рабочей силы. Платить рабочему больше, значит лишишься прибыли. О каком примирении может идти речь?

Ну а то, что Ленин придумал классовую борьбу, чтобы оправдать репрессии, может утверждать только человек, совершенно не в ладах с нашей историей. И Маркс, и Ленин говорили о необходимости уничтожения классов, до мозоли на языке подчеркивая, что уничтожение классов -- это вовсе не означает уничтожения людей. И власть большевиков начала с самого начала показала себя мягкой и гуманной. Но эта протянутая рука была отвергнута свергнутыми классами. Они сразу же начали террор против новой власти и где-то с середины 1918 пришлось перейти к красному террору. "Революция только тогда чего-нибудь стоит, когда умеет защищаться"

Владимир Дмитриевич Соколов   20.10.2023 10:34     Заявить о нарушении
+ добавить замечания
Спасибо за рецензию! Но у вас речь лишь про одно государство, а не про другое(свободное), которое не понято, как не понято и "государство" Платона, по причине трудности понимания глубины диалектической связки "справедливое-несправедливое", в которой скрыт некий "примиряющий класс". Не видя подобного "класса", остается говорить лишь о насилующем и насилуемом классе, увы.

Геннадий Макеев   20.10.2023 10:34   Заявить о нарушении
+ добавить замечания
Рецензия на «Меж ВЫ и ТЫ» (Геннадий Макеев)

Ты может перейти в тыканье..))..если что-то меж вы и ты..? Хороший вопрос.

Тамерлан Кузьгов   19.04.2023 20:22     Заявить о нарушении
+ добавить замечания
Рецензия на «Война и мир нашей психушки» (Геннадий Макеев)

Пройдет и тьма, когда все клетки поднимут из кювета деток.

Demiourg   09.12.2022 01:08     Заявить о нарушении
+ добавить замечания
Рецензия на «Война и мир нашей психушки» (Геннадий Макеев)

Природы две не могут в нас
Противоречьем разрешиться
Суть в созидающий экстаз.
-
в противоречие дуальном
гамак качает каузальный.
.
всё так.

Бамбек   23.09.2022 11:01     Заявить о нарушении
+ добавить замечания
Рецензия на «Война» (Геннадий Макеев)

Да, я не перестаю удивляться высокомерию и хамству сторонников Украины на прозе ру. Люди не аргументируют свою точку зрения, просто выражают презрение к остальным.
Что это такое? Откуда это жлобство?

Марина Сапир   16.05.2022 13:57     Заявить о нарушении
+ добавить замечания
Рецензия на «Ленин и другое государство» (Геннадий Макеев)

Ленину просто надо было обосновать бесконечные репрессии, чтобы держать народ в страхе и подчинении. Никаких классов там не было, кроме класса номенклатуры и класса всех остальных. Государство нужно было, чтобы поддерживать власть номенклатуры, самого Ленина. Но, как всегда, Ленин и (Сталин потом) врали, что это делается в интересах (несуществующего) пролетариата, и только они знают, что служит интересам этого пролетариата. Ленин делал из марксизма все, что ему хочется. (Хотя глупая идея классовой борьбы при капитализме у Маркса была-таки была, и требовала уничтожения одной из сторон в производственных отношениях.)

Марина Сапир   16.05.2022 13:52     Заявить о нарушении
+ добавить замечания
Спасибо за рецензию.

Геннадий Макеев   20.05.2022 07:38   Заявить о нарушении
+ добавить замечания
Рецензия на «Война» (Геннадий Макеев)

Во время русско-японской и 1 Мировой тоже всякие сволочи вели подрывную работу.
И ведь ничего на этом не выиграли.
Как и всякие, заключившие договор с дьяволом.

Мария Березина   06.04.2022 09:20     Заявить о нарушении
+ добавить замечания
Рецензия на «Деление на ноль» (Геннадий Макеев)

<<И вот условное деление мира, основанное на школьной математике(или подобное ей), естественно, загоняет рассудок в бесконечные трения(споры, в которых, увы, не рождается истина).<<

Рождается истина, рождается, не переживайте! В 19-м веке считалось, что траектории в классической механике всегда можно определить: если заданы начальные условия, то динамические законы позволяют вычислить любую траекторию для любого момента времени. Между тем, хорошо известно, что в некоторых точках классические траектории становятся неопределенными. В общем случае траектория системы в процессе эволюции может изменяться так, что никакое наблюдение не позволит точно вычислить начальные условия. И наоборот, если известно точное начальное состояние системы, то это не гарантирует, что ее траектория в конце концов изменить свой тип.

К примеру, если взять систему свободных частиц, то их потенциальная энергия будет равна нулю, а значит с самого начала все состояния этой системы заданы, поскольку не изменяются при ее эволюции во времени. Но большинство динамических систем являются системами с взаимодействием. Чтобы исключить его, нужно перейти от обычных уравнений к каноническим уравнениям. Системы, для которых такой переход возможен, называются интегрируемыми, а если невозможен, - то неинтегрируемыми. Сам переход называется каноническим преобразованием. Долгое время считалось, что интегрируемы все динамические системы. Но в 1889 г. Пуанкаре показал, что это не так, и что в большинстве своем эти системы неинтегрируемы. Причина - возникновение резонансов между степенями свободы систем. Если возникают резонансы, то интегралы расходятся.

Под резонансами здесь понимается кратность частот (гармоник) периодических движений в системе. Каждая степень свободы системы имеет свою частоту. Влияние резонансов проявляется тогда, когда в систему с исключенным взаимодействием вводится возмущение. При разложения этого возмущения по степеням его константы связи эти частоты оказываются в знаменателях членов этого разложения. В случае резонанса между частотами эти знаменатели оказываются нулевыми, а члены разложения - бесконечными, что и соответствует расхождению интегралов. Вот вам конкретный пример деления на ноль, крайне важный в теории динамических систем, поэтому на резонансы никто никогда не предлагал вводить запрет.

Для решения этой проблемы Колмогоров (в 1954), Арнольд (в 1963) и Мозер (в 1962) разработали теорию, позволяющую исследовать влияние резонансов на траектории динамических систем. Согласно этой теории, рациональные отношения между частотами соответствуют периодическому движению систем, а иррациональные отношения - квазипериодическому. А поскольку мощность множества рациональных чисел по отношению к мощности множества иррациональных чисел равна нулю, то периодическое движение в фазовом пространстве встречается неизмеримо реже, чем квазипериодическое. Первое называется простым, а второе - сложным. В первом имеет место полная интегрируемость, а во втором все гораздо сложнее. Так, в 1884 г. Ковалевская показала, что хотя квазипериодические системы в большинстве своем неинтегрируемы, в некоторых особых случаях они интегрируемы. Этот результат оказался первым в теории вполне интегрируемых систем и привел к таким знаменитым уравнениям, как уравнение Кортевега-де-Фриза, нелинейное уравнение Шредингера, уравнение синус-Гордон.

Но это еще не решение проблемы, а всего лишь обходные пути. Настоящее решение предложил в 1974 г. Пригожин в теории диссипативных структур. Он показал, что существует тесная связь между корреляциями в неравновесной термодинамике и классификацией систем на интегрируемые и неинтегрируемые. Интегрируемые системы - это системы, в которых можно исключить столкновения между молекулами. А поскольку столкновения создают корреляции, то с исключением взаимодействия исключаются и они. Такое состояние корреляций называется вакуумом корреляций. Если эволюция системы начинается с вакуума корреляций, то в ходе нее не могут возникать парные, тройные и более сложные корреляции, поэтому состояние вакуума корреляций не зависит от времени. В неинтегрируемых системах существуют непрерывные процессы рождения и гибели корреляций, которые зависят от времени. Неинтегрируемость систем означает, что в них нельзя исключить поток корреляций с помощью какого-либо преобразования. Роль резонансов в этом потоке состоит в том, что они связывают фрагменты рождения и гибели корреляций. Такие фрагменты называются пузырями. Пузыри соответствуют нелокальным событиям, которые нужно рассматривать как единое целое. Резонансы - это и есть такие события.

Дальше я не буду рассказывать, читайте Пригожина (например, Пригожин И., Стенгерс И. "Время, хаос, квант. К решению парадокса времени", - М.: УРСС, 2003 г.). Скажу лишь только, что все его диссипативные структуры (в том числе, солитоны) содержат резонансы.

Александр Изотов 3   21.03.2022 12:42     Заявить о нарушении
+ добавить замечания
Александр, а если ноль разделить на 2 - сколько будет?

Наука нас уверяет, что будет "положительная энергия" вещества и излучения с одной стороны, и "отрицательная энергия" гравитации с другой.

Эх, не доросли мы, дурачины-простофили, до сей высшей математики! Простой смертный просто обзавидуется: разделил нулевой денежный доход за год — получил приход в триллион долларов (плюс) и расход в тот же триллион (минус). Можешь ни в чём себе не отказывать!

Сергей Горский Москва   27.10.2022 09:45   Заявить о нарушении
<<...а если ноль разделить на 2 - сколько будет?<<

Я вообще-то говорил о делении на ноль, а не о делении нуля. Я такие не по делу вопросы обычно удаляю. Могли бы спросить в сообщении, если сильно приспичило.

Деление нуля - самый обычный прием. Деление нуля действительных чисел дает два вида чисел - положительные и отрицательные, деление нуля комплексных чисел - четыре вида чисел и т.д. Пустой ведь вопрос. Зачем вы спросили?

Александр Изотов 3   27.10.2022 12:47   Заявить о нарушении
Не велите казнить, велите слово молвить, Ваше Величество, Александр Третий!!!

Да, путаемся мы тут у Вас под ногами, отвлекаем от важных государевых дел... Нолями всякими голову забиваем... Школьные правила вспоминаем, мол, "При делении нуля на любое ненулевое число получается ноль: 0/a=0 при a не равно нулю". Но у августейших особ своя математика!

Не смею больше тревожить Ваше Величество!

Сергей Горский Москва   28.10.2022 05:44   Заявить о нарушении
+ добавить замечания
Рецензия на «Деление на ноль» (Геннадий Макеев)

ОЗОРУЮ!

Ноль - это ЧИСЛО?!...

Любое число делёное на себя дает ЕДИНИЦУ!?... Ноль разделить на ноль = 1 ?!...

Пустота в пустоте - это... что-то... там есть?!... ))))))))))))))))
Удачи!

Скиф Фикс   15.03.2022 09:33     Заявить о нарушении

Избранные автором:

Добавившие в избранные автора: